On simultaneously nilpotent antiring matrices
نویسندگان
چکیده
منابع مشابه
Counting Symmetric Nilpotent Matrices
We determine the number of nilpotent matrices of order n over Fq that are selfadjoint for a given nondegenerate symmetric bilinear form, and in particular find the number of symmetric nilpotent matrices.
متن کاملOn Pairs of Commuting Nilpotent Matrices
Let B be a nilpotent matrix and suppose that its Jordan canonical form is determined by a partition λ. Then it is known that its nilpotent commutator NB is an irreducible variety and that there is a unique partition μ such that the intersection of the orbit of nilpotent matrices corresponding to μ with NB is dense in NB. We prove that map D given by D(λ) = μ is an idempotent map. This answers a...
متن کاملA Note on Nilpotent Lattice Matrices
Some properties and characterizations for nilpotent matrices are established and in particular, a necessary and sufficient condition for an n × n nilpotent matrix to have the nilpotent index 2 and 3 is given. Mathematics Subject Classification: 15A33; 06D99
متن کاملInvertible and Nilpotent Matrices over Antirings
Abstract. In this paper we characterize invertible matrices over an arbitrary commutative antiring S with 1 and find the structure of GLn(S). We find the number of nilpotent matrices over an entire commutative finite antiring. We prove that every nilpotent n×n matrix over an entire antiring can be written as a sum of ⌈log2 n⌉ square-zero matrices and also find the necessary number of square-zer...
متن کاملOn the Variety of Almost Commuting Nilpotent Matrices
Let V be a vector space of dimension n over a fieldK of characteristic equal to 0 or ≥ n/2. Let g = gln(V ) and n be the nilcone of g, i.e., the cone of nilpotent matrices of g. We write elements of V and V ∗ as column and row vectors, respectively. In this paper we study the variety N := {(X,Y, i, j) ∈ n× n × V × V ∗ | [X,Y ] + ij = 0} and prove that it has n irreducible components: 2 of dimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2012
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2012.05.005